On univariate fractional calculus with general bivariate analytic kernels

dc.contributor.authorIsah, Sunday Simon
dc.contributor.authorFernandez, Arran
dc.contributor.authorOzarslan, Mehmet Ali
dc.date.accessioned2026-02-06T18:36:05Z
dc.date.issued2023
dc.departmentDoğu Akdeniz Üniversitesi
dc.description.abstractSeveral fractional integral and derivative operators have been defined recently with a bivariate structure, acting on functions of a single variable but with kernels defined using double power series. We propose a general structure to contain all such operators, and establish some important mathematical facts, such as a series formula, a Leibniz rule, a fundamental theorem of calculus, and Laplace and Fourier transform relations, which are applicable to all operators within our general structure.
dc.identifier.doi10.1007/s40314-023-02363-1
dc.identifier.issn2238-3603
dc.identifier.issn1807-0302
dc.identifier.issue5
dc.identifier.orcid0000-0002-6260-7196
dc.identifier.scopus2-s2.0-85163021328
dc.identifier.scopusqualityQ1
dc.identifier.urihttps://doi.org/10.1007/s40314-023-02363-1
dc.identifier.urihttps://hdl.handle.net/11129/12185
dc.identifier.volume42
dc.identifier.wosWOS:001018119500002
dc.identifier.wosqualityQ1
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherSpringer Heidelberg
dc.relation.ispartofComputational & Applied Mathematics
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_WoS_20260204
dc.subjectFractional integrals
dc.subjectFractional derivatives
dc.subjectGeneral analytic kernels
dc.subjectFractional Leibniz rule
dc.subjectIntegral transform methods
dc.subjectBivariate fractional calculus
dc.titleOn univariate fractional calculus with general bivariate analytic kernels
dc.typeArticle

Files