The Interplay between Fractional Calculus and Complex Analysis

dc.contributor.advisorFernandez, Arran (Supervisor)
dc.contributor.authorBouzouina, Chaima
dc.date.accessioned2024-03-12T11:25:25Z
dc.date.available2024-03-12T11:25:25Z
dc.date.issued2021-09
dc.date.submitted2021
dc.departmentEastern Mediterranean University, Faculty of Arts and Sciences, Dept. of Mathematicsen_US
dc.descriptionDoctor of Philosophy in Mathematics. Institute of Graduate Studies and Research. Thesis (Ph.D.) - Eastern Mediterranean University, Faculty of Arts and Sciences, Dept. of Mathematics, 2021. Supervisor: Asst. Prof. Dr. Arran Fernandez.en_US
dc.description.abstractThe usual definitions of fractional derivatives and integrals are very well-suited for a fractional generalisation of real analysis. But the basic building blocks of complex analysis are different: although fractional derivatives of complex-valued functions and to complex orders are well known, concepts such as the Cauchy–Riemann equations and d-bar derivatives have no analogues in the standard fractional calculus. In the current work, we propose a formulation of fractional calculus which is better suited to complex analysis and to all the tools and methods associated with this field. We consider some concrete examples and various fundamental properties of this fractional version of complex analysis. Keywords: fractional derivatives, complex analysis, d-bar derivatives, Leibniz ruleen_US
dc.description.abstractÖZ: Kesirli türevlerin ve integrallerin olagan tanımları, gerçek analizin kesirli bir ˘ genelle¸stirilmesi için çok uygundur. Ancak kompleks analizin temel yapı ta¸sları farklıdır: kompleks degerli fonksiyonların kesirli türevleri ve kompleks emirler iyi ˘ bilinmesine ragmen, Cauchy-Riemann denklemleri ve d-bar türevleri gibi kavramların ˘ standart fraksiyonel kalkülüste analogları yoktur. Mevcut çalı¸smada, kompleks analize ve bu alanla ili¸skili tüm araç ve yöntemlere daha uygun kesirli kalkülüsün formülasyonunu öneriyoruz. kompleks analizin bu kesirli versiyonunun bazı somut örneklerini ve çe¸sitli temel özelliklerini göz önünde bulunduruyoruz. Anahtar Kelimeler: kesirli türevlerin, kompleks analiz, d-bar türevleri, Leibniz kuralı.en_US
dc.identifier.citationBouzouina, Chaima. (2021). The Interplay between Fractional Calculus and Complex Analysis. Thesis (Ph.D.), Eastern Mediterranean University, Institute of Graduate Studies and Research, Dept. of Mathematics, Famagusta: North Cyprus.en_US
dc.identifier.urihttps://hdl.handle.net/11129/5857
dc.language.isoen
dc.publisherEastern Mediterranean University (EMU) - Doğu Akdeniz Üniversitesi (DAÜ)en_US
dc.relation.publicationcategoryTez
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectMathematicsen_US
dc.subjectApplied Mathematics and Computer Scienceen_US
dc.subjectFractional Calculusen_US
dc.subjectFractional derivativesen_US
dc.subjectcomplex analysisen_US
dc.subjectd-bar derivativesen_US
dc.subjectLeibniz ruleen_US
dc.titleThe Interplay between Fractional Calculus and Complex Analysisen_US
dc.typeDoctoral Thesis

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Bouzouinachaima-Ph.D..pdf
Size:
670.27 KB
Format:
Adobe Portable Document Format
Description:
Thesis, Doctoral

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.77 KB
Format:
Item-specific license agreed upon to submission
Description: