A New Image Enhancement-Based Framework for Spoofing Detection in Ear-Based Biometric Authentication Systems

dc.contributor.authorContreras, Rodrigo Colnago
dc.contributor.authorSilva Carmassi, Caio Ulisses
dc.contributor.authorViana, Monique Simplicio
dc.contributor.authorToygar, Onsen
dc.contributor.authorGuido, Rodrigo Capobianco
dc.date.accessioned2026-02-06T18:17:02Z
dc.date.issued2025
dc.departmentDoğu Akdeniz Üniversitesi
dc.description23rd International Conference on Artificial Intelligence and Soft Computing-ICAISC -- JUN 16-20, 2024 -- Zakopane, POLAND
dc.description.abstractBiometric identification systems using ears have been gaining attention in recent decades because of their advantages compared to other physiological characteristics. Consequently, attacks known as spoofing or fraud against this type of biometrics are inevitable. Therefore, it is necessary to create techniques to prevent this type of attack since, in the literature, this subject is still not sufficiently addressed. This paper proposes a new framework with data augmentation, multifiltering, feature extraction, and fusion steps for spoofing detection in biometric identification systems based on ear recognition. The proposed method aims to increase the ability of classifiers to differentiate images of real ears from fake ears. The material was analyzed considering two of the most well-known public ear databases, UBEAR and AMI, containing images of real ears, and photographs captured from the images in these databases were considered fakes. The results obtained by the proposed material were competitive or superior compared to other methods in the literature that make up the state-of-the-art in this topic.
dc.description.sponsorshipCoordenacao de Aperfeicoamento de Pessoal de Nivel Superior-Brasil (CAPES); National Council for Scientific and Technological Development (CNPq); Sao Paulo Research Foundation (FAPESP) [303854/222-7, 2021/12407-4, 2022/05186-4, 2019/21464-1, 2013/07375-0, 2023/06611-3, 001]
dc.description.sponsorshipWe gratefully acknowledge the grants provided by the Brazilian agencies: Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior-Brasil (CAPES); National Council for Scientific and Technological Development (CNPq) and The Sao Paulo Research Foundation (FAPESP), respectively through the processes 303854/222-7 (CNPq - RCG), 2021/12407-4 (FAPESP - RCG), 2022/05186-4 (FAPESP - RCC), 2019/21464-1 (FAPESP - RCC), 2013/07375-0 (FAPESP-RCC), 2023/06611-3 (FAPESP - MSV) and Finance Code 001 (CAPES - MSV).
dc.identifier.doi10.1007/978-3-031-81596-6_23
dc.identifier.endpage269
dc.identifier.isbn978-3-031-81595-9
dc.identifier.isbn978-3-031-81596-6
dc.identifier.issn2945-9133
dc.identifier.issn1611-3349
dc.identifier.orcid0000-0003-4003-7791
dc.identifier.orcid0000-0002-2960-8293
dc.identifier.orcid0000-0002-0924-8024
dc.identifier.orcid0000-0001-7402-9058
dc.identifier.scopus2-s2.0-105010230942
dc.identifier.scopusqualityQ3
dc.identifier.startpage253
dc.identifier.urihttps://doi.org/10.1007/978-3-031-81596-6_23
dc.identifier.urihttps://hdl.handle.net/11129/8751
dc.identifier.volume15166
dc.identifier.wosWOS:001535055300023
dc.identifier.wosqualityN/A
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherSpringer International Publishing Ag
dc.relation.ispartofArtificial Intelligence and Soft Computing, Icaisc 2024, Pt Iii
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_WoS_20260204
dc.subjectBiometrics
dc.subjectEar Authentication
dc.subjectSpoofing Detection
dc.subjectEar Liveness Detection
dc.subjectPattern Recognition
dc.subjectTexture Analysis
dc.titleA New Image Enhancement-Based Framework for Spoofing Detection in Ear-Based Biometric Authentication Systems
dc.typeConference Object

Files