Evaluation of poly(2-hydroxyethyl methacrylate) and poly(N-hydroxyethyl acrylamide) cryogels as potential quercetin release matrices

Loading...
Thumbnail Image

Date

Journal Title

Journal ISSN

Volume Title

Publisher

Taylor & Francis Ltd

Access Rights

info:eu-repo/semantics/closedAccess

Abstract

Fabrication of a suitable drug delivery system forms an attractive strategy to overcome the low bioavailability of quercetin. Poly(2-hydroxyethyl methacrylate-co-N-hydroxyethyl acrylamide), P(HEMA-co-HEAA) copolymer samples, and homopolymers of 2-hydroxyethyl methacrylate (PHEMA) and N-hydroxyethyl acrylamide (PHEAA) offer potential as quercetin delivery matrices owing to their favorable properties rendered in this study. Free radical polymerization applied under cryogenic conditions produced the polymer gels. The homopolymers and copolymers are noncytotoxic, porous, soft cryogels with surfaces resistant to protein and HCT-116 cancer cell adhesion. In vitro, quercetin release studies from samples reveal swelling-controlled, zero-order drug release at pH = 7.4 and 37 degrees C with high cumulative release percentages ranging from 92.03% to 94.82%. The durability of the cryogels and limited quercetin release at pH = 2.0 indicate that these cryogels are promising matrices for successfully delivering quercetin to the small intestine, where its primary absorption occurs.

Description

Keywords

Drug release, antifouling properties, N-2-hydroxyethyl acrylamide, 2-hydroxyethyl methacrylate, cytotoxicity

Journal or Series

International Journal of Polymer Analysis and Characterization

WoS Q Value

Scopus Q Value

Volume

29

Issue

3

Citation

Endorsement

Review

Supplemented By

Referenced By