Robust adaptive b eamforming base d on virtual sensors using low-complexity spatial sampling

dc.contributor.authorMohammadzadeh, Saeed
dc.contributor.authorNascimento, Vitor H.
dc.contributor.authorde Lamare, Rodrigo C.
dc.contributor.authorKukrer, Osman
dc.date.accessioned2026-02-06T18:43:03Z
dc.date.issued2021
dc.departmentDoğu Akdeniz Üniversitesi
dc.description.abstractThe performance of robust adaptive beamforming (RAB) based on interference-plus-noise covariance (IPNC) matrix reconstruction can be degraded seriously in the presence of random mismatches (look direction and array geometry), particularly when the input signal-to-noise ratio (SNR) is high. In this work, we present a RAB technique to address covariance matrix reconstruction problems. The proposed RAB technique involves IPNC matrix reconstruction using a low-complexity spatial sampling process (LCSSP) and employs a virtual received array vector. In particular, the power spectrum sampling is realized by a proposed projection matrix in a higher dimension. The essence of the proposed technique is to avoid reconstruction of the IPNC matrix by integrating over the angular sector of the interference-plus-noise region. Simulation results are presented to verify the effectiveness of the proposed RAB approach. (c) 2021 Elsevier B.V. All rights reserved.
dc.description.sponsorshipSo Paulo Research Foundation (FAPESP) through the ELIOT project [2018/12579-7, 2019/193879]
dc.description.sponsorshipThis work was supported in part by the So Paulo Research Foundation (FAPESP) through the ELIOT project under Grant 2018/12579-7 and Grant 2019/193879.
dc.identifier.doi10.1016/j.sigpro.2021.108172
dc.identifier.issn0165-1684
dc.identifier.issn1872-7557
dc.identifier.orcid0000-0002-3283-4400
dc.identifier.orcid0000-0003-2322-6451
dc.identifier.orcid0000-0002-8793-2577
dc.identifier.scopus2-s2.0-85108117116
dc.identifier.scopusqualityQ1
dc.identifier.urihttps://doi.org/10.1016/j.sigpro.2021.108172
dc.identifier.urihttps://hdl.handle.net/11129/13432
dc.identifier.volume188
dc.identifier.wosWOS:000709087200008
dc.identifier.wosqualityQ2
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherElsevier
dc.relation.ispartofSignal Processing
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_WoS_20260204
dc.subjectCovariance matrix reconstruction
dc.subjectRobust adaptive beamforming
dc.subjectSpatial spectrum process
dc.subjectVirtual sensors
dc.titleRobust adaptive b eamforming base d on virtual sensors using low-complexity spatial sampling
dc.typeArticle

Files