Robust adaptive b eamforming base d on virtual sensors using low-complexity spatial sampling
| dc.contributor.author | Mohammadzadeh, Saeed | |
| dc.contributor.author | Nascimento, Vitor H. | |
| dc.contributor.author | de Lamare, Rodrigo C. | |
| dc.contributor.author | Kukrer, Osman | |
| dc.date.accessioned | 2026-02-06T18:43:03Z | |
| dc.date.issued | 2021 | |
| dc.department | Doğu Akdeniz Üniversitesi | |
| dc.description.abstract | The performance of robust adaptive beamforming (RAB) based on interference-plus-noise covariance (IPNC) matrix reconstruction can be degraded seriously in the presence of random mismatches (look direction and array geometry), particularly when the input signal-to-noise ratio (SNR) is high. In this work, we present a RAB technique to address covariance matrix reconstruction problems. The proposed RAB technique involves IPNC matrix reconstruction using a low-complexity spatial sampling process (LCSSP) and employs a virtual received array vector. In particular, the power spectrum sampling is realized by a proposed projection matrix in a higher dimension. The essence of the proposed technique is to avoid reconstruction of the IPNC matrix by integrating over the angular sector of the interference-plus-noise region. Simulation results are presented to verify the effectiveness of the proposed RAB approach. (c) 2021 Elsevier B.V. All rights reserved. | |
| dc.description.sponsorship | So Paulo Research Foundation (FAPESP) through the ELIOT project [2018/12579-7, 2019/193879] | |
| dc.description.sponsorship | This work was supported in part by the So Paulo Research Foundation (FAPESP) through the ELIOT project under Grant 2018/12579-7 and Grant 2019/193879. | |
| dc.identifier.doi | 10.1016/j.sigpro.2021.108172 | |
| dc.identifier.issn | 0165-1684 | |
| dc.identifier.issn | 1872-7557 | |
| dc.identifier.orcid | 0000-0002-3283-4400 | |
| dc.identifier.orcid | 0000-0003-2322-6451 | |
| dc.identifier.orcid | 0000-0002-8793-2577 | |
| dc.identifier.scopus | 2-s2.0-85108117116 | |
| dc.identifier.scopusquality | Q1 | |
| dc.identifier.uri | https://doi.org/10.1016/j.sigpro.2021.108172 | |
| dc.identifier.uri | https://hdl.handle.net/11129/13432 | |
| dc.identifier.volume | 188 | |
| dc.identifier.wos | WOS:000709087200008 | |
| dc.identifier.wosquality | Q2 | |
| dc.indekslendigikaynak | Web of Science | |
| dc.indekslendigikaynak | Scopus | |
| dc.language.iso | en | |
| dc.publisher | Elsevier | |
| dc.relation.ispartof | Signal Processing | |
| dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | |
| dc.rights | info:eu-repo/semantics/closedAccess | |
| dc.snmz | KA_WoS_20260204 | |
| dc.subject | Covariance matrix reconstruction | |
| dc.subject | Robust adaptive beamforming | |
| dc.subject | Spatial spectrum process | |
| dc.subject | Virtual sensors | |
| dc.title | Robust adaptive b eamforming base d on virtual sensors using low-complexity spatial sampling | |
| dc.type | Article |










