Solving Prabhakar differential equations using Mikusinski's operational calculus

dc.contributor.authorRani, Noosheza
dc.contributor.authorFernandez, Arran
dc.date.accessioned2026-02-06T18:36:05Z
dc.date.issued2022
dc.departmentDoğu Akdeniz Üniversitesi
dc.description.abstractWe study the structure and operators of Prabhakar fractional calculus, in particular the operators of Caputo type, using the machinery of Mikusinski's operational calculus. This algebraic framework allows us to construct explicit solutions for Prabhakar-type fractional differential equations, including the general (incommensurate, multi-order) linear constant-coefficient fractional differential equation posed using Caputo-type Prabhakar derivatives.
dc.identifier.doi10.1007/s40314-022-01794-6
dc.identifier.issn2238-3603
dc.identifier.issn1807-0302
dc.identifier.issue3
dc.identifier.orcid0000-0002-1491-1820
dc.identifier.scopus2-s2.0-85126270460
dc.identifier.scopusqualityQ1
dc.identifier.urihttps://doi.org/10.1007/s40314-022-01794-6
dc.identifier.urihttps://hdl.handle.net/11129/12183
dc.identifier.volume41
dc.identifier.wosWOS:000769473400003
dc.identifier.wosqualityQ1
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherSpringer Heidelberg
dc.relation.ispartofComputational & Applied Mathematics
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_WoS_20260204
dc.subjectFractional differential equations
dc.subjectOperational calculus
dc.subjectMikusinski's operational calculus
dc.subjectMittag-Leffler functions
dc.subjectPrabhakar fractional calculus
dc.titleSolving Prabhakar differential equations using Mikusinski's operational calculus
dc.typeArticle

Files