A Genetic Programming Approach to Forecast Daily Electricity Demand

dc.contributor.authorMehr, Ali Danandeh
dc.contributor.authorBagheri, Farzaneh
dc.contributor.authorResatoglu, Rifat
dc.date.accessioned2026-02-06T18:16:42Z
dc.date.issued2019
dc.departmentDoğu Akdeniz Üniversitesi
dc.description13th International Conference on Application of Fuzzy Systems and Soft Computing (ICAFS) -- AUG 27-28, 2018 -- Warsaw, POLAND
dc.description.abstractA number of recent researches have compared machine learning techniques to find more reliable approaches to solve variety of engineering problems. In the present study, capability of canonical genetic programming (GP) technique to model daily electrical energy consumption (ED) as an alternative for electrical demand prediction was investigated. For this aim, using the most recent ED data recorded at northern part of Nicosia, Cyprus, we put forward two daily prediction scenarios subjected to train and validate by GPdotNET, an open source GP software. Minimizing root mean square error between the modeled and observed data as the objective function, the best prediction model at each scenario has been presented for the city. The results indicated the promising role of GP for daily ED prediction in Nicosia, however it suffers from lagged prediction that must be considered in practical application.
dc.description.sponsorshipAzerbaijan Assoc Zadehs Legacy & Artificial Intelligence,Azerbaijan State Oil & Ind Univ,Berkeley Initiat Soft Comp,Georgia State Univ,Near E Univ,TOBB Econ & Technol Univ,Univ Alberta,Univ Siegen,Univ Texas,Univ Toronto
dc.identifier.doi10.1007/978-3-030-04164-9_41
dc.identifier.endpage308
dc.identifier.isbn978-3-030-04164-9
dc.identifier.issn2194-5357
dc.identifier.issn2194-5365
dc.identifier.orcid0000-0003-2769-106X
dc.identifier.scopus2-s2.0-85059771796
dc.identifier.scopusqualityN/A
dc.identifier.startpage301
dc.identifier.urihttps://doi.org/10.1007/978-3-030-04164-9_41
dc.identifier.urihttps://hdl.handle.net/11129/8618
dc.identifier.volume896
dc.identifier.wosWOS:000461058100041
dc.identifier.wosqualityN/A
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherSpringer International Publishing Ag
dc.relation.ispartof13Th International Conference on Theory and Application of Fuzzy Systems and Soft Computing - Icafs-2018
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_WoS_20260204
dc.subjectGenetic programming
dc.subjectElectricity demand
dc.subjectTime series analysis
dc.titleA Genetic Programming Approach to Forecast Daily Electricity Demand
dc.typeConference Object

Files