IMAGE EQUALIZATION BASED ON SINGULAR VALUE DECOMPOSITION

dc.contributor.authorDemirel, Hasan
dc.contributor.authorAnbarjafari, Gholamreza
dc.contributor.authorJahromi, Mohammad N. Sabet
dc.date.accessioned2026-02-06T18:17:02Z
dc.date.issued2008
dc.departmentDoğu Akdeniz Üniversitesi
dc.description23rd International Symposium on Computer and Information Sciences (ISCIS) -- OCT 27-29, 2008 -- Istanbul, TURKEY
dc.description.abstractIn this paper, a novel image equalization technique which is based on singular value decomposition (SVD) is proposed. The singular value matrix represents the intensity information of the given image and any change on the singular values change the intensity of the input image. The proposed technique converts the image into the SVD domain and after normalizing the singular value matrix it reconstructs the image in the spatial domain by using the updated singular value matrix. The technique is called the singular value equalization (SVE) and compared with the standard grayscale histogram equalization (GHE) method. The visual and quantitative results suggest that the proposed SVE method clearly outperforms the GHE method.
dc.identifier.endpage139
dc.identifier.isbn978-1-4244-2880-9
dc.identifier.orcid0000-0001-8460-5717
dc.identifier.scopusqualityN/A
dc.identifier.startpage135
dc.identifier.urihttps://hdl.handle.net/11129/8754
dc.identifier.wosWOS:000265160400026
dc.identifier.wosqualityN/A
dc.indekslendigikaynakWeb of Science
dc.language.isoen
dc.publisherIEEE
dc.relation.ispartof23Rd International Symposium on Computer and Information Sciences
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_WoS_20260204
dc.subjectHistogram Equalization
dc.titleIMAGE EQUALIZATION BASED ON SINGULAR VALUE DECOMPOSITION
dc.typeConference Object

Files