Undesirable effects of output normalization in multiple classifier systems

dc.contributor.authorAltinçay, H
dc.contributor.authorDemirekler, M
dc.date.accessioned2026-02-06T18:43:17Z
dc.date.issued2003
dc.departmentDoğu Akdeniz Üniversitesi
dc.description.abstractIncomparability of the classifier output scores is a major problem in the combination of different classification systems. In order to deal with this problem, the measurement level classifier outputs are generally normalized. However, empirical results have shown that output normalization may lead to some undesirable effects. This paper presents analyses for some most frequently used normalization methods and it is shown that the main reason for these undesirable effects of output normalization is the dimensionality reduction in the output space. An artificial classifier combination example and a real-data experiment are provided where these effects are further clarified. (C) 2002 Elsevier Science B.V. All rights reserved.
dc.identifier.doi10.1016/S0167-8655(02)00286-6
dc.identifier.endpage1170
dc.identifier.issn0167-8655
dc.identifier.issue9-10
dc.identifier.scopus2-s2.0-0242600665
dc.identifier.scopusqualityQ1
dc.identifier.startpage1163
dc.identifier.urihttps://doi.org/10.1016/S0167-8655(02)00286-6
dc.identifier.urihttps://hdl.handle.net/11129/13546
dc.identifier.volume24
dc.identifier.wosWOS:000181368900005
dc.identifier.wosqualityQ2
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherElsevier Science Bv
dc.relation.ispartofPattern Recognition Letters
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_WoS_20260204
dc.subjectoutput score normalization
dc.subjectdimensionality reduction
dc.subjectclass separability
dc.subjectoutput post-processing
dc.subjectmeasurement level classifier combination
dc.titleUndesirable effects of output normalization in multiple classifier systems
dc.typeArticle

Files