ON THE MOD P STEENROD ALGEBRA AND THE LEIBNIZ-HOPF ALGEBRA
Loading...
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Amer Inst Mathematical Sciences-Aims
Access Rights
info:eu-repo/semantics/openAccess
Abstract
Let p be a fixed odd prime. The Bockstein free part of the mod p Steenrod algebra, A(p), can be defined as the quotient of the mod p reduction of the Leibniz Hopf algebra, F-p. We study the Hopf algebra epimorphism pi: F-p -> A(p) to investigate the canonical Hopf algebra conjugation in A(p) together with the conjugation operation in F-p . We also give a result about conjugation invariants in the mod 2 dual Leibniz Hopf algebra using its multiplicative algebra structure.
Description
Keywords
Hopf algebra, Leibniz-Hopf algebra, Steenrod algebra
Journal or Series
Electronic Research Archive
WoS Q Value
Scopus Q Value
Volume
28
Issue
2










