One-dimensional hydrogen atom: a singular potential in quantum mechanics

dc.contributor.authorGordeyev, AN
dc.contributor.authorChhajlany, SC
dc.date.accessioned2026-02-06T18:47:43Z
dc.date.issued1997
dc.departmentDoğu Akdeniz Üniversitesi
dc.description.abstractA generalized Laplace transform approach is developed to study the eigenvalue problem of the one-dimensional singular potential V = -e(2)/\x\. Matching of solutions at the origin that has been a matter of much controversy is, thereby, made redundant. A discrete and non-degenerate bound-state spectrum results. Existing arguments in the literature that advocate (a) a continuous spectrum, (b) a degeneracy of energy levels as a result of a hidden O(2) symmetry, (c) an infinite negative energy state and (d) an impenetrable barrier at the origin are found to be untenable. It is argued that 3 judicious use of generalized functions, coupled with some classical considerations, enables the conventional method of solving the problem to recover precisely the same results which are shown to be in accord with an accurate semiclassical analysis of the problem.
dc.identifier.doi10.1088/0305-4470/30/19/025
dc.identifier.endpage6909
dc.identifier.issn0305-4470
dc.identifier.issue19
dc.identifier.scopus2-s2.0-0347703385
dc.identifier.scopusqualityN/A
dc.identifier.startpage6893
dc.identifier.urihttps://doi.org/10.1088/0305-4470/30/19/025
dc.identifier.urihttps://hdl.handle.net/11129/14520
dc.identifier.volume30
dc.identifier.wosWOS:A1997YA15200025
dc.identifier.wosqualityN/A
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherIop Publishing Ltd
dc.relation.ispartofJournal of Physics A-Mathematical and General
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_WoS_20260204
dc.titleOne-dimensional hydrogen atom: a singular potential in quantum mechanics
dc.typeArticle

Files