On the Global Optima of Kernelized Adversarial Representation Learning

dc.contributor.authorSadeghi, Bashir
dc.contributor.authorYu, Runyi
dc.contributor.authorBoddeti, Vishnu
dc.date.accessioned2026-02-06T18:28:57Z
dc.date.issued2019
dc.departmentDoğu Akdeniz Üniversitesi
dc.descriptionIEEE/CVF International Conference on Computer Vision (ICCV) -- OCT 27-NOV 02, 2019 -- Seoul, SOUTH KOREA
dc.description.abstractAdversarial representation learning is a promising paradigm for obtaining data representations that are invariant to certain sensitive attributes while retaining the information necessary for predicting target attributes. Existing approaches solve this problem through iterative adversarial minimax optimization and lack theoretical guarantees. In this paper, we first study the linear form of this problem i.e., the setting where all the players are linear functions. We show that the resulting optimization problem is both non-convex and non-differentiable. We obtain an exact closed-form expression for its global optima through spectral learning and provide performance guarantees in terms of analytical bounds on the achievable utility and invariance. We then extend this solution and analysis to non-linear functions through kernel representation. Numerical experiments on UCI, Extended Yale B and CIFAR-100 datasets indicate that, (a) practically, our solution is ideal for imparting provable invariance to any biased pre-trained data representation, and (b) the global optima of the kernel form can provide a comparable trade-off between utility and invariance in comparison to iterative minimax optimization of existing deep neural network based approaches, but with provable guarantees.
dc.description.sponsorshipIEEE,IEEE Comp Soc,CVF
dc.identifier.doi10.1109/ICCV.2019.00806
dc.identifier.endpage7978
dc.identifier.isbn978-1-7281-4803-8
dc.identifier.issn1550-5499
dc.identifier.scopus2-s2.0-85081939240
dc.identifier.scopusqualityN/A
dc.identifier.startpage7970
dc.identifier.urihttps://doi.org/10.1109/ICCV.2019.00806
dc.identifier.urihttps://hdl.handle.net/11129/11171
dc.identifier.wosWOS:000548549203009
dc.identifier.wosqualityN/A
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherIEEE
dc.relation.ispartof2019 Ieee/Cvf International Conference on Computer Vision (Iccv 2019)
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/openAccess
dc.snmzKA_WoS_20260204
dc.titleOn the Global Optima of Kernelized Adversarial Representation Learning
dc.typeConference Object

Files