Seismic Performance Assessment of Reinforced Concrete Building Stock Using Artificial Neural Network and Linear Regression Analysis

dc.contributor.advisorÖzay, Giray (Supervisor)
dc.contributor.authorKarayel, Oğuz
dc.date.accessioned2024-09-04T08:42:10Z
dc.date.available2024-09-04T08:42:10Z
dc.date.issued2020-01
dc.date.submitted2020-01
dc.departmentEastern Mediterranean University, Faculty of Engineering, Dept. of Civil Engineeringen_US
dc.descriptionMaster of Science in Civil Engineering. Institute of Graduate Studies and Research. Thesis (M.S.) - Eastern Mediterranean University, Faculty of Engineering, Dept. of Civil Engineering, 2020. Supervisor: Assoc. Prof. Dr. Giray Özay.en_US
dc.description.abstractIstanbul is located on extensive piece of land which is susceptible by seismic activity. In the last half century, Turkish earthquake codes for designing building under earthquake loads went through many modifications and editions (TEC1975, TEC1997, TEC2007, and TBEC2018). Hence, there are many buildings existing that has been built in accordance with old regulations since improvements in the recent earthquake code. Therefore, the need of a quick assessment method to identify the building seismic performance level in accordance with the latest seismic code is extremely vital. For this purpose, this research is aiming to prepare a database for the quick estimation on building seismic performance by constructing an artificial neural network model that is capable of this, relating building material properties, geometry, designed standard, site class, and peak ground acceleration to the building seismic performance levels. In order to meet these objectives, 540 reinforced concrete building models with various parameters are modeled with respect to TEC1975, TEC1997, TEC2007, TBEC2018 and seismic performance obtained from the analysis in accordance with TBEC2018. Data obtained are used to train and validate the constructed artificial neural network (ANN) model. Also, several training algorithms performed with various number of hidden layers and comparison between them is discussed in order to figure out the optimum number of hidden layers and best train method which gives the highest accuracy of prediction for the performance assessment of the buildings. Since the artificial neural network model created for the performance level estimation of the existing buildings, validity of the created model is checked by the application through the existing buildings as a case study with various parameters within the range of considerations according to the existing study. The data obtained from the analysis is used to perform multiple linear regression analysis (MVLRA) as well. Results indicate that ANN can be a very profound technique in predicting the seismic performance levels with a determination coefficient (R2 ) of 0.8786. Furthermore, identification of the significance of the predictor variables according to their effect on seismic assessment have been done with several methods which are widely used in literature as well.en_US
dc.description.abstractÖZ: Istanbul deprem hareketleri ile kritik durumda bulunan büyük bir bölgedir. Bu bağlamda son zamanlarda depreme dayanıklı yapı tasarımı konusunda birçok araştırma ve geliştirmelerle birlikte Türk Deprem Yönetmelikleri tasarlanmıştır. Buna rağmen, farklı tasarım ve yaklaşım öngörüleriyle önceden inşa edilmiş birçok mevcut yapı bulunmaktadır. Bu doğrultuda, yapıların yeni deprem yönetmeliğine göre yapı performans seviyesinin belirlenmesi adına hızlı değerlendirme yönteminin geliştirilmesi hayati bir ihtiyaç haline gelmiştir. Bu çalışmanın amacı yapay sinir ağı modeli ile binaların farklı malzeme özellikleri, geometrisi, tasarım yönetmeliği, zemin çeşidi, yer ivmesine göre bina performans seviyesi hakkında hızlı değerlendime metodu geliştirmektir. Bu bağlamda, TDY1975, TDY1997, TDY2007 ve TBDY2018 kullanılarak belirtilen farklı parametreler doğrultusunda 540 betonarme bina modellenmiş ve TBDY2018 ile bina performans analizi yapılmıştır. Analizlerden elde edilen veriler yapay sinir ağı modeli öğretiminde ve doğrulamasında kullanılmıştır. Buna ek olarak, yapay sinir ağı farklı öğrenim algoritmaları ile modellenip en doğru performans tahmini elde edilen öğrenim algoritması ile çalışan yapay sinir ağı modeli belirlenmiştir. Analizden elde edilen veriler ile doğrusal regresyon analizi de yapılmıştır. Sonuç olarak yapay sinir ağı modelinin doğruluk payı anlamında çok etkili bir teknik olduğu ve modelin doğruluk oranı (R2 ) 0.8786 olarak bulunmuştur. Buna ek olarak, çalışmada kullanılan farklı parametrelerin performans seviyesinin belirlenmesindeki etkisi bağlamında önem sırasına göre sıralanması adına literatür araştırması ile yaygın olarak kullanıldığı belirlenen farklı metodlar uygulanılmıştır.en_US
dc.identifier.citationKarayel, Oğuz. (2020). Seismic Performance Assessment of Reinforced Concrete Building Stock Using Artificial Neural Network and Linear Regression Analysis. Thesis (M.S.), Eastern Mediterranean University, Institute of Graduate Studies and Research, Dept. of Civil Engineering, Famagusta: North Cyprus.en_US
dc.identifier.urihttps://hdl.handle.net/11129/6116
dc.language.isoen
dc.publisherEastern Mediterranean University (EMU) - Doğu Akdeniz Üniversitesi (DAÜ)en_US
dc.relation.publicationcategoryTez
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectCivil Engineering Departmenten_US
dc.subjectEarthquake resistant designen_US
dc.subjectEarthquake resistant design--Concrete construction--Reinforced concreteen_US
dc.subjectBuildings--Earthquake effectsen_US
dc.subjectReinforced concrete--Reinforced concrete constructionen_US
dc.subjectANN, TBEC2018, Pushover, Performanceen_US
dc.titleSeismic Performance Assessment of Reinforced Concrete Building Stock Using Artificial Neural Network and Linear Regression Analysisen_US
dc.typeMaster Thesis

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
OğuzKarayelMs.pdf
Size:
1.96 MB
Format:
Adobe Portable Document Format
Description:
Thesis, Master

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.88 KB
Format:
Item-specific license agreed upon to submission
Description: