Particle Filters for Single-objective Numerical Optimization
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Access Rights
Abstract
This thesis introduces a novel approach combining Particle Filters and the L-BFGS-B optimization method for solving single-objective numerical optimization problems. The proposed method intricately marries the stochastic exploration of Particle Filters with the local optimization prowess of L-BFGS-B to navigate complex landscapes efficiently. Extensive experimentation on benchmark problems validates the approach's effectiveness, convergence speed, accuracy, and robustness. This fusion of methodologies opens new vistas for conquering diverse optimization challenges.
ÖZ : Bu tez, problemleri sürekli ve ayrık alanlar olarak sınıflandırmakta ve tek amaçlı sayısal eniyileme problemlerini çözmek için Parçacık Filtreleri ile L-BFGS-B eniyileme yöntemini birleştiren yeni bir yaklaşım sunmaktadır. Önerilen yöntem, karmaşık alanlarda verimli bir şekilde gezinmek için Parçacık Filtrelerinin stokastik keşfi ile L-BFGS-B'nin yerel eniyileme becerisini karmaşık bir şekilde birleştirmektedir. Karşılaştırmalı problemler üzerinde yapılan kapsamlı deneyler, yaklaşımın etkinliğini, yakınsama hızını, doğruluğunu ve sağlamlığını doğrulamaktadır. Metodolojilerin bu birleşimi, çeşitli optimizasyon zorluklarının üstesinden gelmek için yeni ufuklar açmaktadır.










