On bivariate fractional calculus with general univariate analytic kernels

dc.contributor.authorIsah, Sunday Simon
dc.contributor.authorFernandez, Arran
dc.contributor.authorOzarslan, Mehmet Ali
dc.date.accessioned2026-02-06T18:37:22Z
dc.date.issued2023
dc.departmentDoğu Akdeniz Üniversitesi
dc.description.abstractWe introduce a general bivariate fractional calculus, defined using a kernel based on an arbitrary univariate analytic function with an appropriate bivariate substitution. Various properties of the introduced general operators are established, including a series formula, function space mappings, and Fourier and Laplace transforms. A major result of this paper is a fractional Leibniz rule for the new operators, the derivation of which involves correcting a minor error in one of the classic textbooks on fractional calculus. We also solve some fractional differential equations using transform methods, revealing an interesting connection between bivariate type Mittag-Leffler functions.
dc.identifier.doi10.1016/j.chaos.2023.113495
dc.identifier.issn0960-0779
dc.identifier.issn1873-2887
dc.identifier.orcid0000-0002-6260-7196
dc.identifier.scopus2-s2.0-85158040946
dc.identifier.scopusqualityQ1
dc.identifier.urihttps://doi.org/10.1016/j.chaos.2023.113495
dc.identifier.urihttps://hdl.handle.net/11129/12447
dc.identifier.volume171
dc.identifier.wosWOS:001020474500001
dc.identifier.wosqualityQ1
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherPergamon-Elsevier Science Ltd
dc.relation.ispartofChaos Solitons & Fractals
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_WoS_20260204
dc.subjectBivariate fractional calculus
dc.subjectFractional integral operators
dc.subjectAnalytic kernel functions
dc.subjectLeibniz rule
dc.subjectDouble Laplace transforms
dc.titleOn bivariate fractional calculus with general univariate analytic kernels
dc.typeArticle

Files