On bivariate fractional calculus with general univariate analytic kernels
| dc.contributor.author | Isah, Sunday Simon | |
| dc.contributor.author | Fernandez, Arran | |
| dc.contributor.author | Ozarslan, Mehmet Ali | |
| dc.date.accessioned | 2026-02-06T18:37:22Z | |
| dc.date.issued | 2023 | |
| dc.department | Doğu Akdeniz Üniversitesi | |
| dc.description.abstract | We introduce a general bivariate fractional calculus, defined using a kernel based on an arbitrary univariate analytic function with an appropriate bivariate substitution. Various properties of the introduced general operators are established, including a series formula, function space mappings, and Fourier and Laplace transforms. A major result of this paper is a fractional Leibniz rule for the new operators, the derivation of which involves correcting a minor error in one of the classic textbooks on fractional calculus. We also solve some fractional differential equations using transform methods, revealing an interesting connection between bivariate type Mittag-Leffler functions. | |
| dc.identifier.doi | 10.1016/j.chaos.2023.113495 | |
| dc.identifier.issn | 0960-0779 | |
| dc.identifier.issn | 1873-2887 | |
| dc.identifier.orcid | 0000-0002-6260-7196 | |
| dc.identifier.scopus | 2-s2.0-85158040946 | |
| dc.identifier.scopusquality | Q1 | |
| dc.identifier.uri | https://doi.org/10.1016/j.chaos.2023.113495 | |
| dc.identifier.uri | https://hdl.handle.net/11129/12447 | |
| dc.identifier.volume | 171 | |
| dc.identifier.wos | WOS:001020474500001 | |
| dc.identifier.wosquality | Q1 | |
| dc.indekslendigikaynak | Web of Science | |
| dc.indekslendigikaynak | Scopus | |
| dc.language.iso | en | |
| dc.publisher | Pergamon-Elsevier Science Ltd | |
| dc.relation.ispartof | Chaos Solitons & Fractals | |
| dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | |
| dc.rights | info:eu-repo/semantics/closedAccess | |
| dc.snmz | KA_WoS_20260204 | |
| dc.subject | Bivariate fractional calculus | |
| dc.subject | Fractional integral operators | |
| dc.subject | Analytic kernel functions | |
| dc.subject | Leibniz rule | |
| dc.subject | Double Laplace transforms | |
| dc.title | On bivariate fractional calculus with general univariate analytic kernels | |
| dc.type | Article |










