Employing Data from Diagnosed Patients for Undiagnosed Type 2 Diabetes Detection

dc.contributor.authorHajarolasvadi, Noushin
dc.contributor.authorSheikhi, Ghazaal
dc.contributor.authorAltincay, Hakan
dc.date.accessioned2026-02-06T18:16:43Z
dc.date.issued2016
dc.departmentDoğu Akdeniz Üniversitesi
dc.description14th Annual International Conference on Informatics, Management, and Technology in Healthcare (ICIMTH) -- JUL 01-03, 2016 -- Athens, GREECE
dc.description.abstractIn this study, it is aimed to generate improved models for detecting undiagnosed type II diabetes mellitus patients by employing data from both undiagnosed and diagnosed patients. The main motivation is that, with the widespread use of electronic health records, increasing amount of data is accumulating for diagnosed patients. In our simulations, the training sets are allowed to include data from both undiagnosed and diagnosed patients. The models generated are then evaluated using the undiagnosed patients. Experimental results have shown that the data from diagnosed patients do not help to improve the detection performance of undiagnosed patients.
dc.identifier.doi10.3233/978-1-61499-664-4-75
dc.identifier.endpage78
dc.identifier.isbn978-1-61499-664-4
dc.identifier.isbn978-1-61499-663-7
dc.identifier.issn0926-9630
dc.identifier.issn1879-8365
dc.identifier.orcid0000-0002-3120-5370
dc.identifier.pmid27350470
dc.identifier.scopus2-s2.0-84978733888
dc.identifier.scopusqualityQ4
dc.identifier.startpage75
dc.identifier.urihttps://doi.org/10.3233/978-1-61499-664-4-75
dc.identifier.urihttps://hdl.handle.net/11129/8624
dc.identifier.volume226
dc.identifier.wosWOS:000385446600017
dc.identifier.wosqualityN/A
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakPubMed
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherIos Press
dc.relation.ispartofUnifying the Applications and Foundations of Biomedical and Health Informatics
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_WoS_20260204
dc.subjecttype 2 diabetes prediction
dc.subjectelectronic health records
dc.subjectdiagnosed patients
dc.subjectlogistic regression
dc.titleEmploying Data from Diagnosed Patients for Undiagnosed Type 2 Diabetes Detection
dc.typeConference Object

Files