Stock Market Prediction Using Analytic Hierarchy Process and Support Vector Machine

dc.contributor.advisorAcan, Adnan
dc.contributor.authorSaeed, Vaman Ashqi
dc.date.accessioned2020-01-28T09:32:12Z
dc.date.available2020-01-28T09:32:12Z
dc.date.issued2017-01
dc.date.submitted2017
dc.departmentEastern Mediterranean University, Faculty of Engineering, Dept. of Computer Engineeringen_US
dc.descriptionMaster of Science in Computer Engineering. Thesis (M.S.)--Eastern Mediterranean University, Faculty of Engineering, Dept. of Computer Engineering, 2017. Supervisor: Assist. Prof. Dr. Adnan Acan.en_US
dc.description.abstractPrediction of the stock market behavior has been a research topic for decades. Because it is a challenging subject both in terms of the choice of the prediction model and in terms of constructing the set of features that model will use for forecasting. In this thesis, a novel feature ranking and feature selection approach incorporation with weighted kernel least squares support vector machines (LS-SVMs) were used. We introduce the analytic hierarchy process (AHP) into the stock market and then evaluate criteria which provide the prediction model with relevant knowledge of the underlying processes of the studied stock market. The feature weights obtained by the AHP method are applied for feature ranking and selection and used with the LS-SVMs through a weighted kernel. The experimental results specify that the new model outperforms the benchmark models. Furthermore, the set of feature weights obtained by the new approach can also independently be incorporated into other kernel-based learners. Keywords: stock market prediction, analytic hierarchy process, support vector machine, least squares support vector machines, weighted kernel.en_US
dc.description.abstractÖZ: Borsa davranışının tahmini çeyrek yüzyıl boyunca bir araştırma konusu olmuştur. Çünkü, tahmin modelinin seçimi ve modelin kullanacağı özellikler kümesimin inşası açılarından borsa davranışının tahmini iddialı bir konudur. Bu tezde, yeni bir özellik sıralama ve özellik seçme yöntemi, ağırlılı çekirdek en küçük kareler destek vektör makineleri (LS-SVM) beraberinde kullanılmıştır. Analitik hiyerarşi süreci (AHP) yöntemini borsa özellik seçimi için kullandık ve kullanılan borsa verileri için ilgili bilgiye dayanan tahmin modeli için kriterleri değerlendirdik. AHP ile elde edilen özellik ağırlıkları LS-SVM’in ağırlıklı çekirdek yaklaşımı aracılığıyla özellik sıralama ve seçimi için kullanıldı. Deneysel sonuçlar kullanılan modelin ölçüt modellerden daha başarılı olduğunu göstermiştir. Buna ek olarak, yeni yöntemle elde edilen özellik ağrılıkları başka çekirdek tabanlı sistemlere bağımsız olarak eklenebilir. Anahtar kelimeler: Borsa tahmini, analitik hiyerarşi süreç, destek vector makineleri, en küçük kareler destek vector makineleri, ağırlıklı çekirdek.en_US
dc.identifier.citationSaeed, Vaman Ashqi. (2017).Stock Market Prediction Using Analytic Hierarchy Process and Support Vector Machine . Thesis (M.S.),Eastern Mediterranean University, Faculty of Engineering, Dept. of Computer Engineering, Famagusta: North Cyprus.en_US
dc.identifier.urihttps://hdl.handle.net/11129/4300
dc.language.isoen
dc.publisherEastern Mediterranean University EMU - Doğu Akdeniz Üniversitesi (DAÜ)en_US
dc.relation.publicationcategoryTez
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectComputer Engineeringen_US
dc.subjectMachine learningen_US
dc.subjectComputational intelligence-Artificial intelligenceen_US
dc.subjectstock market predictionen_US
dc.subjectanalytic hierarchy processen_US
dc.subjectsupport vector machineen_US
dc.subjectleast squares support vector machinesen_US
dc.subjectweighted kernelen_US
dc.titleStock Market Prediction Using Analytic Hierarchy Process and Support Vector Machineen_US
dc.typeMaster Thesis

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
saeedvaman.pdf
Size:
1.32 MB
Format:
Adobe Portable Document Format
Description:
Thesis, Master

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.77 KB
Format:
Item-specific license agreed upon to submission
Description: