On a certain bivariate Mittag-Leffler function analysed from a fractional-calculus point of view

dc.contributor.authorKurt, Cemaliye
dc.contributor.authorOzarslan, Mehmet Ali
dc.contributor.authorFernandez, Arran
dc.date.accessioned2026-02-06T18:33:40Z
dc.date.issued2021
dc.departmentDoğu Akdeniz Üniversitesi
dc.description.abstractMittag-Leffler functions of one variable play a vital role in several areas of study. Their connections with fractional calculus enable many physical processes, such as diffusion and viscoelasticity, to be efficiently modelled. Here, we consider a Mittag-Leffler function of two variables and the associated double integral operator, with the goal of establishing once again connections with fractional calculus. By working from the fractional-calculus viewpoint, it is possible to obtain many new results concerning the double integral operator, including a series formula and a bivariate chain rule. We also discover a left inverse operator, which completes this model of fractional calculus. As applications, we solve some initial value problems and use a modified Stancu-Bernstein model to approximate the image of a Holder-continuous function under the action of our double integral operator.
dc.identifier.doi10.1002/mma.6324
dc.identifier.endpage2620
dc.identifier.issn0170-4214
dc.identifier.issn1099-1476
dc.identifier.issue3
dc.identifier.orcid0000-0002-1491-1820
dc.identifier.scopus2-s2.0-85081300030
dc.identifier.scopusqualityQ1
dc.identifier.startpage2600
dc.identifier.urihttps://doi.org/10.1002/mma.6324
dc.identifier.urihttps://hdl.handle.net/11129/11441
dc.identifier.volume44
dc.identifier.wosWOS:000562314300001
dc.identifier.wosqualityQ1
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherWiley
dc.relation.ispartofMathematical Methods in the Applied Sciences
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_WoS_20260204
dc.subjectbivariate Mittag-Leffler functions
dc.subjectdouble Laplace transform
dc.subjectfractional integrals
dc.subjectfractional derivatives
dc.subjectMittag-Leffler functions
dc.titleOn a certain bivariate Mittag-Leffler function analysed from a fractional-calculus point of view
dc.typeArticle

Files