Localized discriminative scale invariant feature transform based facial expression recognition

dc.contributor.authorSoyel, Hamit
dc.contributor.authorDemirel, Hasan
dc.date.accessioned2026-02-06T18:37:31Z
dc.date.issued2012
dc.departmentDoğu Akdeniz Üniversitesi
dc.description.abstractThis paper presents a discriminative scale invariant feature transform (D-SIFT) based feature representation for person-independent facial expression recognition. Keypoint descriptors of the SIFT features are used to construct distinctive facial feature vectors. Kullback Leibler divergence is used for the initial classification of the localized facial expressions and weighted majority voting based classifier is employed to fuse the decisions obtained from localized rectangular facial regions to generate the overall decision. Experiments on the Bosphorus and BU-3DFE databases illustrate that the D-SIFT is effective and efficient for facial expression recognition. (c) 2011 Elsevier Ltd. All rights reserved.
dc.identifier.doi10.1016/j.compeleceng.2011.10.016
dc.identifier.endpage1309
dc.identifier.issn0045-7906
dc.identifier.issn1879-0755
dc.identifier.issue5
dc.identifier.orcid0000-0002-0305-574X
dc.identifier.scopus2-s2.0-84866344504
dc.identifier.scopusqualityQ1
dc.identifier.startpage1299
dc.identifier.urihttps://doi.org/10.1016/j.compeleceng.2011.10.016
dc.identifier.urihttps://hdl.handle.net/11129/12506
dc.identifier.volume38
dc.identifier.wosWOS:000309693900023
dc.identifier.wosqualityQ1
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherPergamon-Elsevier Science Ltd
dc.relation.ispartofComputers & Electrical Engineering
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_WoS_20260204
dc.subjectFace
dc.titleLocalized discriminative scale invariant feature transform based facial expression recognition
dc.typeArticle

Files