Solution of the Dirac equation in the near horizon geometry of an extreme Kerr black hole - art. no. 124012

dc.contributor.authorSakalli, I
dc.contributor.authorHalilsoy, M
dc.date.accessioned2026-02-06T18:49:01Z
dc.date.issued2004
dc.departmentDoğu Akdeniz Üniversitesi
dc.description.abstractThe Dirac equation is solved in the near horizon limit geometry of an extreme Kerr black hole. We decouple equations first, as usual, into an axial and angular part. The axial equation turns out to be independent of the mass and is solved exactly. The angular equation reduces, in the massless case, to a confluent Heun equation. In general for a nonzero mass, the angular equation is expressible, at best, as a set of coupled first order differential equations apt for numerical investigation. The axial potentials corresponding to the associated Schrodinger-type equations and their conserved currents are found. Finally, based on our solution, we verify in a similar way the absence of superradiance for Dirac particles in the near horizon, a result which is well known within the context of a general Kerr background.
dc.identifier.doi10.1103/PhysRevD.69.124012
dc.identifier.issn2470-0010
dc.identifier.issn2470-0029
dc.identifier.issue12
dc.identifier.orcid0000-0001-9344-5786
dc.identifier.orcid0000-0001-7827-9476
dc.identifier.scopus2-s2.0-3843094837
dc.identifier.scopusqualityQ1
dc.identifier.urihttps://doi.org/10.1103/PhysRevD.69.124012
dc.identifier.urihttps://hdl.handle.net/11129/14695
dc.identifier.volume69
dc.identifier.wosWOS:000222681600052
dc.identifier.wosqualityQ1
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherAmer Physical Soc
dc.relation.ispartofPhysical Review D
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/openAccess
dc.snmzKA_WoS_20260204
dc.subjectSpace-Time
dc.titleSolution of the Dirac equation in the near horizon geometry of an extreme Kerr black hole - art. no. 124012
dc.typeArticle

Files