Amelino-camelia DSR effects on Landau levels of Dirac pairs with non-minimal coupling

Loading...
Thumbnail Image

Date

Journal Title

Journal ISSN

Volume Title

Publisher

Springer

Access Rights

info:eu-repo/semantics/openAccess

Abstract

We present an analytical study of a fermion-antifermion (ff\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f\overline{f}$$\end{document}) system governed by a two-body Dirac equation (TBDE) in (2+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(2+1)$$\end{document}-dimensional Minkowski spacetime, incorporating Dirac oscillator (DO) interactions and a uniform magnetic field. We work within Amelino-Camelia's framework, capturing leading-order Planck-scale effects while preserving the TBDE's first-order structure. Separation of center-of-mass and relative coordinates reduces the problem to a Whittaker-type radial equation, yielding a closed-form energy spectrum. DSR induces uniform energy shifts that grow with radial excitation but preserve mass symmetry between particle and antiparticle. A critical magnetic field is identified, at which Planck-scale effects vanish and the spectrum collapses to the rest mass threshold, indicating suppressed spatial resolution. These findings provide a consistent platform for probing Planckian signatures in relativistic bound states and affirm the robustness of spectral symmetries under DSR.

Description

Keywords

Oscillator, Relativity, Equations, System

Journal or Series

European Physical Journal C

WoS Q Value

Scopus Q Value

Volume

85

Issue

9

Citation

Endorsement

Review

Supplemented By

Referenced By