Imperialist Competitive Algorithm with Updated Assimilation for the Solution of Real Valued Optimization Problems

dc.contributor.authorSherinov, Zhavat
dc.contributor.authorUnveren, Ahmet
dc.contributor.authorAcan, Adnan
dc.date.accessioned2026-02-06T18:51:36Z
dc.date.issued2018
dc.departmentDoğu Akdeniz Üniversitesi
dc.description.abstractIn this paper, an improved imperialistic competitive algorithm is presented for real-valued optimization problems. A new method is introduced for the movement of colonies towards their imperialist, which is called assimilation. The proposed method uses Euclidean distance along with Pearson correlation coefficient as an operator for assimilating colonies with respect to their imperialists. Applications of the proposed algorithm to classical and recently published hard benchmark problems, and statistical analysis associated with the corresponding experimental results illustrated that the achieved success is significantly better than a number of state-of-the art methods.
dc.identifier.doi10.1142/S0218213018500057
dc.identifier.issn0218-2130
dc.identifier.issn1793-6349
dc.identifier.issue2
dc.identifier.orcid0000-0002-8487-1107
dc.identifier.scopus2-s2.0-85044540295
dc.identifier.scopusqualityQ3
dc.identifier.urihttps://doi.org/10.1142/S0218213018500057
dc.identifier.urihttps://hdl.handle.net/11129/15437
dc.identifier.volume27
dc.identifier.wosWOS:000428946300006
dc.identifier.wosqualityQ4
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherWorld Scientific Publ Co Pte Ltd
dc.relation.ispartofInternational Journal on Artificial Intelligence Tools
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_WoS_20260204
dc.subjectMetaheuristics
dc.subjectimperialist competitive algorithm
dc.subjectglobal optimization
dc.titleImperialist Competitive Algorithm with Updated Assimilation for the Solution of Real Valued Optimization Problems
dc.typeArticle

Files