Feature Selection for Person-Independent 3D Facial Expression Recognition using NSGA-II

dc.contributor.authorTekguec, Umut
dc.contributor.authorSoyel, Hamit
dc.contributor.authorDemirel, Hasan
dc.date.accessioned2026-02-06T18:17:02Z
dc.date.issued2009
dc.departmentDoğu Akdeniz Üniversitesi
dc.description24th International Symposium on Computer and Information Sciences -- SEP 14-16, 2009 -- Guzelyurt, CYPRUS
dc.description.abstractIn this paper, the problem of person-independent facial expression recognition from 3D facial features is investigated. We propose a methodology for the selection of features that uses a multi-objective genetic algorithm where the number of features is optimized to improve classification accuracy. The facial feature selection aims to derive a set of features from the original expression images, which minimizes the within-class separability and maximizes the between-class separability. We used Non-dominated Sorted Genetic Algorithm II (NSGA II) which is one of the latest genetic algorithms developed for resolving problems of multi-objective aspects with more accuracy and higher convergence speed. The proposed methodology is evaluated using 3D facial expression database BU-3DFE. Facial expressions such as anger, sadness, surprise, joy, disgust, fear and neutral are successfully recognized with an average recognition rate of 88.18%.
dc.description.sponsorshipMiddle E Tech Univ
dc.identifier.doi10.1109/ISCIS.2009.5291925
dc.identifier.endpage+
dc.identifier.isbn978-1-4244-5021-3
dc.identifier.orcid0000-0002-0305-574X
dc.identifier.orcid0000-0001-5974-5566
dc.identifier.scopus2-s2.0-73949122173
dc.identifier.scopusqualityN/A
dc.identifier.startpage35
dc.identifier.urihttps://doi.org/10.1109/ISCIS.2009.5291925
dc.identifier.urihttps://hdl.handle.net/11129/8762
dc.identifier.wosWOS:000275024200007
dc.identifier.wosqualityN/A
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherIEEE
dc.relation.ispartof2009 24Th International Symposium on Computer and Information Sciences
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_WoS_20260204
dc.subjectfacial expression recognition
dc.subjectfeature selection
dc.subjectfeature extraction
dc.subjectNSGA II
dc.titleFeature Selection for Person-Independent 3D Facial Expression Recognition using NSGA-II
dc.typeConference Object

Files