Scalar bosons with position-dependent mass in a (2+1)-dimensional gravitational wave background

dc.contributor.authorGuvendi, Abdullah
dc.contributor.authorMustafa, Omar
dc.date.accessioned2026-02-06T18:51:35Z
dc.date.issued2025
dc.departmentDoğu Akdeniz Üniversitesi
dc.description.abstractIn this study, we examine the dynamics of relativistic scalar bosons with a position-dependent mass profile, m(r), in a (2+1)-dimensional gravitational wave background. We derive the Klein-Gordon equation describing this system and obtain exact solutions by incorporating a Coulomb-like modification, m(r)-> m-alpha/r. Our analysis reveals that significantly different behaviors can emerge, dictated by the critical value of the coupling parameter alpha. Specifically, the system exhibits either stable oscillatory modes or decays without real oscillations, depending on the value of alpha. Furthermore, we demonstrate that such a scalar boson cannot exist over time when the coupling parameter reaches its critical value, alpha c.
dc.identifier.doi10.1142/S0217732325501299
dc.identifier.issn0217-7323
dc.identifier.issn1793-6632
dc.identifier.issue30
dc.identifier.orcid0000-0003-0564-9899
dc.identifier.orcid0000-0001-6664-3859
dc.identifier.scopus2-s2.0-105010753476
dc.identifier.scopusqualityQ2
dc.identifier.urihttps://doi.org/10.1142/S0217732325501299
dc.identifier.urihttps://hdl.handle.net/11129/15426
dc.identifier.volume40
dc.identifier.wosWOS:001523339200001
dc.identifier.wosqualityQ2
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherWorld Scientific Publ Co Pte Ltd
dc.relation.ispartofModern Physics Letters A
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_WoS_20260204
dc.subjectGravitational waves
dc.subjectScalar bosons
dc.subjectPosition-dependent mass
dc.subjectspecial functions
dc.titleScalar bosons with position-dependent mass in a (2+1)-dimensional gravitational wave background
dc.typeArticle

Files