Electric load forecasting using an artificial neural network

dc.contributor.authorMadani, Seyed Saeed
dc.date.accessioned2026-02-06T18:00:41Z
dc.date.issued2013
dc.departmentDoğu Akdeniz Üniversitesi
dc.description.abstractThis paper presents an artificial neural network (ANN) approach to electric load forecasting. The ANN is used to learn the relationship among past, current and future temperatures and loads. In order to provide the fore- casted load, the ANN interpolates among the load and temperature data in a training data set. The average absolute errors of the one-hour and 24-hour ahead forecasts in our test on actual utility data are shown to be 1.40% and 2.06%, respectively. This compares with an average error of 4.22% for 24hour ahead forecasts with a currently used forecasting technique applied to the same data.© IDOSI Publications, 2013.
dc.identifier.doi10.5829/idosi.mejsr.2013.18.3.11682
dc.identifier.endpage400
dc.identifier.issn1990-9233
dc.identifier.issue3
dc.identifier.scopus2-s2.0-84891667160
dc.identifier.scopusqualityN/A
dc.identifier.startpage396
dc.identifier.urihttps://doi.org/10.5829/idosi.mejsr.2013.18.3.11682
dc.identifier.urihttps://search.trdizin.gov.tr/tr/yayin/detay/
dc.identifier.urihttps://hdl.handle.net/11129/8057
dc.identifier.volume18
dc.indekslendigikaynakScopus
dc.language.isoen
dc.relation.ispartofMiddle East Journal of Scientific Research
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_Scopus_20260204
dc.subjectArtificial neural network
dc.subjectElectric load forecasting
dc.subjectLoad pattern
dc.titleElectric load forecasting using an artificial neural network
dc.typeArticle

Files