Unconditionally stable locally one dimensional wave equation PML algorithm for truncating 2-D FDTD simulations

dc.contributor.authorRamadan, Omar
dc.date.accessioned2026-02-06T18:33:42Z
dc.date.issued2008
dc.departmentDoğu Akdeniz Üniversitesi
dc.description.abstractUnconditionally, stable locally one dimensional (LOD) scalar wave equation (WE) perfectly matched layer (PML) formulations are presented for truncating two dimensional (2-D) open region finite difference time domain (FDTD) grids. The proposed formulations remove the Courant Friedrichs Lewy (CFL) stability limit of the explicit FDTD algorithm and require solving less field equations as compared with the alternating direction implicit (ADI) WE-PML formulations. Numerical example carried out in 2-D domain is included to show the validity of the proposed formulations. (C) 2007 Wiley Periodicals, Inc.
dc.identifier.doi10.1002/mop.22976
dc.identifier.endpage22
dc.identifier.issn0895-2477
dc.identifier.issue1
dc.identifier.scopus2-s2.0-38049187911
dc.identifier.scopusqualityQ3
dc.identifier.startpage18
dc.identifier.urihttps://doi.org/10.1002/mop.22976
dc.identifier.urihttps://hdl.handle.net/11129/11460
dc.identifier.volume50
dc.identifier.wosWOS:000251856500007
dc.identifier.wosqualityQ4
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherJohn Wiley & Sons Inc
dc.relation.ispartofMicrowave and Optical Technology Letters
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_WoS_20260204
dc.subjectlocally one-dimensional (LOD)
dc.subjectfinite difference time domain (FDTD)
dc.subjectstretched coordinates perfectly matched layer (SC-PML)
dc.subjectwave equation (WE)
dc.titleUnconditionally stable locally one dimensional wave equation PML algorithm for truncating 2-D FDTD simulations
dc.typeArticle

Files