Deep Learning-Based Hybrid Beamforming Under Impulsive Noise for mmWave MIMO Systems
| dc.contributor.author | Awadallah, Safa | |
| dc.contributor.author | Ulusoy, Ali Hakan | |
| dc.contributor.author | Mulla, Mustafa | |
| dc.contributor.author | Rizaner, Ahmet | |
| dc.date.accessioned | 2026-02-06T18:17:14Z | |
| dc.date.issued | 2025 | |
| dc.department | Doğu Akdeniz Üniversitesi | |
| dc.description | 33rd Conference on Signal Processing and Communications Applications-SIU-Annual -- JUN 25-28, 2025 -- Istanbul, TURKIYE | |
| dc.description.abstract | A novel deep learning framework has been proposed for designing hybrid beamformers for a single-user millimeter-wave massive multiple-input multiple-output system that is affected by impulsive noise. Regarding this, we treat the hybrid beamforming design as a regression problem. A Convolutional Neural Network (CNN) model has been designed in this study, which inputs the channel matrix and outputs the hybrid beamformers. The results of the simulation illustrated that the CNN framework successively estimates the best hybrid beamformers and significantly outperforms traditional methods with regard to bit error rate under both impulsive and Gaussian noise. | |
| dc.description.sponsorship | Institute of Electrical and Electronics Engineers Inc | |
| dc.identifier.doi | 10.1109/SIU66497.2025.11112321 | |
| dc.identifier.isbn | 979-8-3315-6656-2 | |
| dc.identifier.isbn | 979-8-3315-6655-5 | |
| dc.identifier.issn | 2165-0608 | |
| dc.identifier.scopus | 2-s2.0-105015548101 | |
| dc.identifier.scopusquality | N/A | |
| dc.identifier.uri | https://doi.org/10.1109/SIU66497.2025.11112321 | |
| dc.identifier.uri | https://hdl.handle.net/11129/8860 | |
| dc.identifier.wos | WOS:001575462500301 | |
| dc.identifier.wosquality | N/A | |
| dc.indekslendigikaynak | Web of Science | |
| dc.indekslendigikaynak | Scopus | |
| dc.language.iso | en | |
| dc.publisher | IEEE | |
| dc.relation.ispartof | 2025 33Rd Signal Processing and Communications Applications Conference, Siu | |
| dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | |
| dc.rights | info:eu-repo/semantics/closedAccess | |
| dc.snmz | KA_WoS_20260204 | |
| dc.subject | mmWave | |
| dc.subject | massive MIMO | |
| dc.subject | impulsive noise | |
| dc.subject | mixture noise model | |
| dc.subject | deep learning and CNN | |
| dc.title | Deep Learning-Based Hybrid Beamforming Under Impulsive Noise for mmWave MIMO Systems | |
| dc.type | Conference Object |










