Deep Learning-Based Hybrid Beamforming Under Impulsive Noise for mmWave MIMO Systems

dc.contributor.authorAwadallah, Safa
dc.contributor.authorUlusoy, Ali Hakan
dc.contributor.authorMulla, Mustafa
dc.contributor.authorRizaner, Ahmet
dc.date.accessioned2026-02-06T18:17:14Z
dc.date.issued2025
dc.departmentDoğu Akdeniz Üniversitesi
dc.description33rd Conference on Signal Processing and Communications Applications-SIU-Annual -- JUN 25-28, 2025 -- Istanbul, TURKIYE
dc.description.abstractA novel deep learning framework has been proposed for designing hybrid beamformers for a single-user millimeter-wave massive multiple-input multiple-output system that is affected by impulsive noise. Regarding this, we treat the hybrid beamforming design as a regression problem. A Convolutional Neural Network (CNN) model has been designed in this study, which inputs the channel matrix and outputs the hybrid beamformers. The results of the simulation illustrated that the CNN framework successively estimates the best hybrid beamformers and significantly outperforms traditional methods with regard to bit error rate under both impulsive and Gaussian noise.
dc.description.sponsorshipInstitute of Electrical and Electronics Engineers Inc
dc.identifier.doi10.1109/SIU66497.2025.11112321
dc.identifier.isbn979-8-3315-6656-2
dc.identifier.isbn979-8-3315-6655-5
dc.identifier.issn2165-0608
dc.identifier.scopus2-s2.0-105015548101
dc.identifier.scopusqualityN/A
dc.identifier.urihttps://doi.org/10.1109/SIU66497.2025.11112321
dc.identifier.urihttps://hdl.handle.net/11129/8860
dc.identifier.wosWOS:001575462500301
dc.identifier.wosqualityN/A
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherIEEE
dc.relation.ispartof2025 33Rd Signal Processing and Communications Applications Conference, Siu
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_WoS_20260204
dc.subjectmmWave
dc.subjectmassive MIMO
dc.subjectimpulsive noise
dc.subjectmixture noise model
dc.subjectdeep learning and CNN
dc.titleDeep Learning-Based Hybrid Beamforming Under Impulsive Noise for mmWave MIMO Systems
dc.typeConference Object

Files