Surface elastic-based MKM formulations for nonlinear three-dimensional vibrations of probabilistic inhomogeneous nanoshells

dc.contributor.authorSahmani, Saeid
dc.contributor.authorSafaei, Babak
dc.date.accessioned2026-02-06T18:34:14Z
dc.date.issued2023
dc.departmentDoğu Akdeniz Üniversitesi
dc.description.abstractIn this study, a numerical approach based upon the moving Kriging meshfree (MKM) formulations within the framework of the Gurtin-Murdoch continuum mechanics in conjunction with the three-dimensional shell theory is established. Thereafter, with the aid of proposed surface elastic-based MKM formulations incorporating proper polynomial basis function, the nonlinear three-dimensional large-amplitude vibration responses of cylindrical shells at nanoscale made of probabilistic nanocomposites and possessing different thicknesses are analyzed. It is revealed that by increasing the maximum lateral deflection associated with the nonlinear oscillation amplitude, the significant of the impact of surface stress tensor improves. Accordingly, by considering the maximum lateral deflection equal to the half of shell thickness, for the simply supported probabilistic inhomogeneous nanoshells having the thickness values of 5nm,10nm,20nm\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$5 \, \mathrm{nm}, 10 \, \mathrm{nm}, 20 \, \mathrm{nm}$$\end{document}, and 50nm\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$50 \, \mathrm{nm}$$\end{document}, the surface stress tensor causes to reduce the value of & omega;nl/& omega;l\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$${\omega }_{nl}/{\omega }_{l}$$\end{document} ratio about 6.31%\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$6.31\%$$\end{document}, 3.81%\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$3.81\%$$\end{document}, 2.10%\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$2.10\%$$\end{document}, and 0.89%\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$0.89\%$$\end{document}, respectively. While by assuming the maximum lateral deflection equal to the shell thickness, the surface stress tensor makes a reduction in the value of & omega;nl/& omega;l\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$${\omega }_{nl}/{\omega }_{l}$$\end{document} ratio about 16.16%\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$16.16\%$$\end{document}, 9. 53%\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$9.53\%$$\end{document}, 5.19%\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$5.19\%$$\end{document}, and 2.19%\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$2.19\%$$\end{document}, respectively.
dc.description.sponsorshipThe authors would like to acknowledge the support from Eastern Mediterranean University and University of Johannesburg.; Eastern Mediterranean University; University of Johannesburg
dc.description.sponsorshipThe authors would like to acknowledge the support from Eastern Mediterranean University and University of Johannesburg.
dc.identifier.doi10.1007/s00542-023-05519-5
dc.identifier.endpage1575
dc.identifier.issn0946-7076
dc.identifier.issn1432-1858
dc.identifier.issue11
dc.identifier.orcid0000-0002-1675-4902
dc.identifier.scopus2-s2.0-85168923651
dc.identifier.scopusqualityQ2
dc.identifier.startpage1557
dc.identifier.urihttps://doi.org/10.1007/s00542-023-05519-5
dc.identifier.urihttps://hdl.handle.net/11129/11679
dc.identifier.volume29
dc.identifier.wosWOS:001060055600001
dc.identifier.wosqualityQ3
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherSpringer Heidelberg
dc.relation.ispartofMicrosystem Technologies-Micro-And Nanosystems-Information Storage and Processing Systems
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_WoS_20260204
dc.subjectCouple Stress Theory
dc.subjectPostbuckling Characteristics
dc.subjectStability Analysis
dc.subjectInstability
dc.subjectPerformance
dc.subjectFabrication
dc.subjectModels
dc.subjectPlates
dc.subjectBeams
dc.titleSurface elastic-based MKM formulations for nonlinear three-dimensional vibrations of probabilistic inhomogeneous nanoshells
dc.typeArticle

Files