Pose Invariant Face Recognition Using Probability Distribution Functions in Different Color Channels

dc.contributor.authorDemirel, Hasan
dc.contributor.authorAnbarjafari, Gholamreza
dc.date.accessioned2026-02-06T18:49:43Z
dc.date.issued2008
dc.departmentDoğu Akdeniz Üniversitesi
dc.description.abstractIn this letter a new and high performance pose invariant face recognition system based on the probability distribution functions (PDF) of pixels in different color channels is proposed. The PDFs of the equalized and segmented face images are used as statistical feature vectors for the recognition of faces by minimizing the Kullback-Leibler distance (KLD) between the PDF of a given face and the PDFs of faces in the database. Feature vector fusion (FVF) and majority voting (MV) methods have been employed to combine feature vectors obtained from different color channels in HSI and YCbCr color spaces to improve the recognition performance. The proposed system has been tested on the FERET and the Head Pose face databases. The recognition rates obtained using FVF approach for FERET database is 98.00% compared with 94.60% and 68.80% for MV and principle component analysis (PCA)-based face recognition techniques, respectively.
dc.identifier.doi10.1109/LSP.2008.926729
dc.identifier.endpage540
dc.identifier.issn1070-9908
dc.identifier.issn1558-2361
dc.identifier.orcid0000-0001-8460-5717
dc.identifier.scopus2-s2.0-67649859056
dc.identifier.scopusqualityQ1
dc.identifier.startpage537
dc.identifier.urihttps://doi.org/10.1109/LSP.2008.926729
dc.identifier.urihttps://hdl.handle.net/11129/15023
dc.identifier.volume15
dc.identifier.wosWOS:000263999300002
dc.identifier.wosqualityQ2
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherIEEE-Inst Electrical Electronics Engineers Inc
dc.relation.ispartofIeee Signal Processing Letters
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_WoS_20260204
dc.subjectFace recognition
dc.subjectfeature vector fusion
dc.subjectKullback-Leibler distance
dc.subjectmajority voting
dc.subjectsingular value decomposition
dc.titlePose Invariant Face Recognition Using Probability Distribution Functions in Different Color Channels
dc.typeArticle

Files