A novel snap-through buckling behaviour of axisymmetric shallow shells with possible application in transducer design

Loading...
Thumbnail Image

Date

Journal Title

Journal ISSN

Volume Title

Publisher

Pergamon-Elsevier Science Ltd

Access Rights

info:eu-repo/semantics/closedAccess

Abstract

In this study, the snap-through buckling behaviour of axisymmetric shells, subjected to axisymmetric horizontal peripheral load or displacement for various shell parameters and various boundary conditions, is investigated. Results obtained seem not to have been reported previously. An application of peripheral displacement type of loading is seen in metal-ceramic composite transducers developed by sandwiching a piezoelectric (PZT) ceramic between two metal end caps which serve as mechanical transformers for converting and amplifying the lateral displacement of the ceramic into an axial motion normal to the metal cap. In our numerical search, we have observed that snap-through and snap-back buckling is possible for shallow spherical caps for a very narrow range of the shell parameter used. When a hole is opened around the apex of the cap, buckling is possible for a larger range of the shell parameter. Obtaining the displacement amplification and the blocking or generative force for various material and geometric properties is necessary for the possible application of the findings in transducer design. The numerical results are presented in graphical forms. (C) 2001 Elsevier Science Ltd. All rights reserved.

Description

Keywords

Geometrically Nonlinear-Analysis, Finite-Element

Journal or Series

Computers & Structures

WoS Q Value

Scopus Q Value

Volume

79

Issue

29-30

Citation

Endorsement

Review

Supplemented By

Referenced By