Rational compacts and exposed quadratic irrationalities

dc.contributor.authorKhrushchev, S.
dc.date.accessioned2026-02-06T18:39:45Z
dc.date.issued2009
dc.departmentDoğu Akdeniz Üniversitesi
dc.description.abstractIf {e(i)}(i=1)(g+1) are non-intersecting closed arcs on the unit circle T then their union E is called rational if all harmonic measures nu(E) (e(j)) at infinity are rational. It is known that the essential support supp(ess) (sigma) of a periodic measure sigma (i.e. the Verblunsky parameters of sigma are periodic) is rational and any rational E is a rotation of supp(ess) (sigma) for a periodic sigma. Elementary proofs of these facts are given. The Schur function f of a periodic sigma satisfies zA* f(2) + (B - zB*)f - A = 0, where the pair (A, B) of polynomials in z is called a Wall pair for sigma. Then supp(ess) (sigma) = {t is an element of T : vertical bar b+(t)vertical bar(2) <= 4 omega}, b(+) = B + zB*, omega = C(E)(2deg(b+)), C(E) being the logarithmic capacity of E. For any monic b with roots on T, b* = b, and omega satisfying 0 < 4 omega <= m(b)(2), where m(b) is the smallest local maximum of vertical bar b vertical bar on T, there is a Wall pair (A, B) such that b = B + zB* and supp(ess) (sigma) = {t is an element of T : vertical bar b(t)vertical bar(2) <= 4 omega} for any periodic sigma corresponding to (A, B). The solutions to the equation b = B + zB* in B related to Wall pairs are described. As a consequence we obtain the inverse Bernstein inequality for a separable polynomial b with roots on T: inf(T) vertical bar b'vertical bar >= 0.5 . m(b) . deg(b). The inequality is precise. A complete description of essential supports of periodic measures is also given in terms of the phases of Akhiezer's multi-valued analytic function as well as separable monic polynomials related to it with roots on T. (C) Elsevier Inc. All rights reserved.
dc.identifier.doi10.1016/j.jat.2009.03.006
dc.identifier.endpage289
dc.identifier.issn0021-9045
dc.identifier.issn1096-0430
dc.identifier.issue2
dc.identifier.orcid0000-0002-8854-5317
dc.identifier.scopus2-s2.0-69949137860
dc.identifier.scopusqualityQ2
dc.identifier.startpage243
dc.identifier.urihttps://doi.org/10.1016/j.jat.2009.03.006
dc.identifier.urihttps://hdl.handle.net/11129/12991
dc.identifier.volume159
dc.identifier.wosWOS:000270468900006
dc.identifier.wosqualityQ3
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherAcademic Press Inc Elsevier Science
dc.relation.ispartofJournal of Approximation Theory
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_WoS_20260204
dc.subjectSchur's algorithm
dc.subjectPeriodic Schur's functions
dc.subjectWall continued fractions
dc.subjectWall pairs
dc.titleRational compacts and exposed quadratic irrationalities
dc.typeArticle

Files