On Fractional Operators and Their Classifications

dc.contributor.authorBaleanu, Dumitru
dc.contributor.authorFernandez, Arran
dc.date.accessioned2026-02-06T18:24:14Z
dc.date.issued2019
dc.departmentDoğu Akdeniz Üniversitesi
dc.description.abstractFractional calculus dates its inception to a correspondence between Leibniz and L'Hopital in 1695, when Leibniz described paradoxes and predicted that one day useful consequences will be drawn from them. In today's world, the study of non-integer orders of differentiation has become a thriving field of research, not only in mathematics but also in other parts of science such as physics, biology, and engineering: many of the useful consequences predicted by Leibniz have been discovered. However, the field has grown so far that researchers cannot yet agree on what a fractional derivative can be. In this manuscript, we suggest and justify the idea of classification of fractional calculus into distinct classes of operators.
dc.identifier.doi10.3390/math7090830
dc.identifier.issn2227-7390
dc.identifier.issue9
dc.identifier.orcid0000-0002-1491-1820
dc.identifier.scopus2-s2.0-85072337052
dc.identifier.scopusqualityQ1
dc.identifier.urihttps://doi.org/10.3390/math7090830
dc.identifier.urihttps://hdl.handle.net/11129/10101
dc.identifier.volume7
dc.identifier.wosWOS:000487953700046
dc.identifier.wosqualityQ1
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherMdpi
dc.relation.ispartofMathematics
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/openAccess
dc.snmzKA_WoS_20260204
dc.subjectfractional calculus
dc.subjectintegral transforms
dc.subjectconvergent series
dc.titleOn Fractional Operators and Their Classifications
dc.typeArticle

Files