Gradient elements of the knapsack polytope

dc.contributor.authorBrimkov, VE
dc.contributor.authorBarneva, RP
dc.date.accessioned2026-02-06T18:22:17Z
dc.date.issued2001
dc.departmentDoğu Akdeniz Üniversitesi
dc.description.abstractThe knapsack problem is a classical NP-hard problem of special interest in combinatorial mathematics and complexity theory. Particularly interesting are the properties of the knapsack problem domain. In this paper we study the set of gradient elements of the knapsack polytope. They are related with the well-known greedy algorithm for finding approximate solutions to the optimization knapsack problem and constitute an important subset of the extremal elements (vertices) of the knapsack polytope. We obtain a tight bound for the number of distinct gradient elements, which is an exponential function of the problem dimension. We also use the greedy-algorithmic approach and the concept of gradient elements to devise a polynomial algorithm for a large subclass of a linear Diophantine problem which is a variant of the knapsack problem. Some optimization issues related to the problems considered are discussed as well.
dc.identifier.endpageU2
dc.identifier.issn0008-0624
dc.identifier.issue1
dc.identifier.scopus2-s2.0-21244495905
dc.identifier.scopusqualityQ1
dc.identifier.startpage51
dc.identifier.urihttps://hdl.handle.net/11129/9727
dc.identifier.volume38
dc.identifier.wosWOS:000176508400003
dc.identifier.wosqualityQ1
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherSpringer-Verlag
dc.relation.ispartofCalcolo
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_WoS_20260204
dc.subjectFrobenius Problem
dc.subjectInteger
dc.titleGradient elements of the knapsack polytope
dc.typeArticle

Files