Exploring Deep Learning Architectures for Multiple Apple Leaf Disease Classification

dc.contributor.authorVaighan, Leila M.
dc.contributor.authorJabbarbabouei, Zeinab
dc.contributor.authorUyguroğlu, Fuat
dc.contributor.authorToygar, Önsen
dc.date.accessioned2026-02-06T17:53:50Z
dc.date.issued2024
dc.departmentDoğu Akdeniz Üniversitesi
dc.descriptionInternational Conference on Advanced Engineering, Technology and Applications, ICAETA 2024 -- 2024-05-24 through 2024-05-25 -- Catania -- 323259
dc.description.abstractThis paper delves into the selection and adaptation of deep learning architectures for classifying diseases in apple trees, with a particular focus on three widely recognized CNN models: VGG16, ResNet152V2, and DenseNet121. By harnessing the established performance and adaptability of these networks, we utilize transfer learning to initiate training with pre-trained models. This approach allows us to capitalize on learned feature representations and mitigate the need for extensive datasets. Our experimental results, conducted on both the PlantVillage and Turkey Plant datasets, showcase the efficacy of ResNet and DenseNet architectures, potentially attributed to their superior feature extraction capabilities. We outline the preprocessing steps, which include employing data augmentation techniques to augment diversity and enrich the training data. Importantly, our study demonstrates improved classification accuracy, highlighting the significance of architectural selection and customization in optimizing deep learning models for specific tasks and providing valuable insights for practitioners aiming to deploy efficient and effective classification systems. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2024.
dc.identifier.doi10.1007/978-3-031-70924-1_18
dc.identifier.endpage245
dc.identifier.isbn9789819652372
dc.identifier.isbn9783031931055
dc.identifier.isbn9789819662968
dc.identifier.isbn9783031999963
dc.identifier.isbn9783031950162
dc.identifier.isbn9783031947698
dc.identifier.isbn9783032004406
dc.identifier.isbn9783031910074
dc.identifier.isbn9783032083807
dc.identifier.isbn9783032077172
dc.identifier.issn2367-3370
dc.identifier.scopus2-s2.0-85210576933
dc.identifier.scopusqualityQ4
dc.identifier.startpage232
dc.identifier.urihttps://doi.org/10.1007/978-3-031-70924-1_18
dc.identifier.urihttps://search.trdizin.gov.tr/tr/yayin/detay/
dc.identifier.urihttps://hdl.handle.net/11129/7116
dc.identifier.volume1138 LNNS
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherSpringer Science and Business Media Deutschland GmbH
dc.relation.ispartofLecture Notes in Networks and Systems
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_Scopus_20260204
dc.subjectApple leaf diseases
dc.subjectclassification
dc.subjectConvolutional Neural Network
dc.subjectDeep Learning
dc.subjectDenseNet121
dc.subjectdisease detection
dc.subjectimage processing
dc.subjectmachine learning
dc.subjectResNet152V2
dc.subjectVGG16
dc.titleExploring Deep Learning Architectures for Multiple Apple Leaf Disease Classification
dc.typeConference Object

Files