On Caputo Type Sequential Fractional Differential Equations

Loading...
Thumbnail Image

Journal Title

Journal ISSN

Volume Title

Publisher

Eastern Mediterranean University (EMU) - Doğu Akdeniz Üniversitesi (DAÜ)

Access Rights

info:eu-repo/semantics/openAccess

Abstract

The goal of this thesis is to give basic information about fractional calculus, and fractional differential equations of different types and study the existence and uniqueness of certain type of fractional differential equation, namely the Caputo type sequential fractional differential equations. Fixed point theorems due to Banach, Krasnoselskii, and Leray-Schauder alternative criterion is applied to obtain the desired results. The results are well illustrated with the aid of examples. Keywords: sequential fractional derivative, integral boundary conditions, fractional differential equation, fixed point theorems

ÖZ: Bu tezin amacı, kesirli kalkülüs ve farklı tipteki kesirli diferansiyel denklemleri hakkındaki temel bilgileri vermek ve belirli tip kesirli diferansiyel denklemin, yani Caputo tipi ardışık kesirli diferansiyel denklemlerin varlığını ve tekliğini incelemektir. İstenen sonuçları elde etmek için Banach, Krasnoselskii ve Leray- Schauder alternatif kriterlere göre sabit nokta teoremleri uygulanmaktadır. Sonuçlar, örnekler yardımıyla gösterilmiştir. Anahtar Kelimeler: dizisel kesirli türev, integral sınır koşulları, kesirli diferansiyel denklemler, sabit nokta teoremleri

Description

Master of Science in Mathematics. Thesis (M.S.)--Eastern Mediterranean University, Faculty of Arts and Sciences, Dept. of Mathematics, 2017. Supervisor: Prof. Dr. Sonuç Zorlu Oğurlu.

Keywords

Mathematics, Calculus-Mathematics, Sequential fractional derivative, integral boundary conditions, fractional differential equation, fixed point theorems

Journal or Series

WoS Q Value

Scopus Q Value

Volume

Issue

Citation

Hussein, Hemn Pirot. (2017). On Caputo Type Sequential Fractional Differential Equations. Thesis (M.S.), Eastern Mediterranean University, Faculty of Arts and Sciences, Dept. of Mathematics, Famagusta: North Cyprus.

Endorsement

Review

Supplemented By

Referenced By