Ensembling evidential k-nearest neighbor classifiers through multi-modal perturbation
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Access Rights
Abstract
Ensembling techniques have already been considered for improving the accuracy of k-nearest neighbor classifier. It is shown that using different feature subspaces for each member classifier, strong ensembles can be generated. Although it has a more flexible structure which is an obvious advantage from diversity point of view and is observed to provide better classification accuracies compared to voting based k-NN classifier, ensembling evidential k-NN classifier which is based on Dempster-Shafer theory of evidence is not yet fully studied. In this paper, we firstly investigate improving the performance of evidential k-NN classifier using random subspace method. Taking into account its potential to be perturbed also in parameter dimension due to its class and classifier dependent parameters, we propose ensembling evidential k-NN through multi-modal perturbation using genetic algorithms. Experimental results have shown that the improved accuracies obtained using random subspace method can be further surpassed through multi-modal perturbation. (c) 2006 Elsevier B. V. All rights reserved.










