Ensembling evidential k-nearest neighbor classifiers through multi-modal perturbation

dc.contributor.authorAltincay, Hakan
dc.date.accessioned2026-02-06T18:37:17Z
dc.date.issued2007
dc.departmentDoğu Akdeniz Üniversitesi
dc.description.abstractEnsembling techniques have already been considered for improving the accuracy of k-nearest neighbor classifier. It is shown that using different feature subspaces for each member classifier, strong ensembles can be generated. Although it has a more flexible structure which is an obvious advantage from diversity point of view and is observed to provide better classification accuracies compared to voting based k-NN classifier, ensembling evidential k-NN classifier which is based on Dempster-Shafer theory of evidence is not yet fully studied. In this paper, we firstly investigate improving the performance of evidential k-NN classifier using random subspace method. Taking into account its potential to be perturbed also in parameter dimension due to its class and classifier dependent parameters, we propose ensembling evidential k-NN through multi-modal perturbation using genetic algorithms. Experimental results have shown that the improved accuracies obtained using random subspace method can be further surpassed through multi-modal perturbation. (c) 2006 Elsevier B. V. All rights reserved.
dc.identifier.doi10.1016/j.asoc.2006.10.002
dc.identifier.endpage1083
dc.identifier.issn1568-4946
dc.identifier.issn1872-9681
dc.identifier.issue3
dc.identifier.scopus2-s2.0-34047249450
dc.identifier.scopusqualityQ1
dc.identifier.startpage1072
dc.identifier.urihttps://doi.org/10.1016/j.asoc.2006.10.002
dc.identifier.urihttps://hdl.handle.net/11129/12375
dc.identifier.volume7
dc.identifier.wosWOS:000245747700042
dc.identifier.wosqualityQ1
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherElsevier
dc.relation.ispartofApplied Soft Computing
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_WoS_20260204
dc.subjectmulti-modal perturbation
dc.subjectevidential k-NN classifier
dc.subjectclassifier ensembles
dc.subjectrandom subspace method
dc.subjectgenetic algorithms
dc.titleEnsembling evidential k-nearest neighbor classifiers through multi-modal perturbation
dc.typeArticle

Files