Minimally coupled fermion-antifermion pairs via exponentially decaying potential
Date
Journal Title
Journal ISSN
Volume Title
Publisher
Access Rights
Abstract
In this study, we explore how a fermion-antifermion (ff\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f\overline{f}$$\end{document}) pair interacts via an exponentially decaying potential. Using a covariant one-time two-body Dirac equation, we examine their relative motion in a three-dimensional flat background. Our approach leads to coupled equations governing their behavior, resulting in a general second-order wave equation. Through this, we derive analytical solutions by establishing quantization conditions for pair formation, providing insights into their dynamics. Notably, we find that such interacting ff\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f\overline{f}$$\end{document} systems are unstable and decay over time, with the decay time depending on the Compton wavelength of the fermions.










