Knowledge incorporation into ACO-based autonomous mobile robot navigation

dc.contributor.authorKose, M
dc.contributor.authorAcan, A
dc.date.accessioned2026-02-06T18:16:52Z
dc.date.issued2004
dc.departmentDoğu Akdeniz Üniversitesi
dc.description19th International Symposium on Computer and Information Sciences (ISCIS 2004) -- OCT 27-29, 2004 -- Kemer Antalya, TURKEY
dc.description.abstractA novel Ant Colony Optimization (ACO) strategy with an external memory containing horizontal and vertical trunks from previously promising paths is introduced for the solution of wall-following robot problem. Ants construct their navigations by retrieving linear path segments, called trunks, from the external memory. Selection of trunks from lists of available candidates is made using a Greedy Randomized Adaptive Search Procedure (GRASP) instead of pure Greedy heuristic as used in traditional ACO algorithms. ne proposed algorithm is tested for several arbitrary rectilinearly shaped room environments with random initial direction and position settings. It is experimentally shown that this novel approach leads to good navigations within reasonable computation times.
dc.description.sponsorshipBilkent Univ, Dept Comp Engn,Inst Elect & Elect Engineers Turkey Sect,Working Grp, Int Federat Informat Proc,Sci & Tech Res Council Turkey
dc.identifier.endpage50
dc.identifier.isbn3-540-23526-4
dc.identifier.issn0302-9743
dc.identifier.scopus2-s2.0-35048893310
dc.identifier.scopusqualityQ3
dc.identifier.startpage41
dc.identifier.urihttps://hdl.handle.net/11129/8682
dc.identifier.volume3280
dc.identifier.wosWOS:000225096700005
dc.identifier.wosqualityN/A
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherSpringer-Verlag Berlin
dc.relation.ispartofComputer and Information Sciences - Iscis 2004, Proceedings
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_WoS_20260204
dc.titleKnowledge incorporation into ACO-based autonomous mobile robot navigation
dc.typeConference Object

Files