On the dual of linear inverse problems
Loading...
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier Science Bv
Access Rights
info:eu-repo/semantics/closedAccess
Abstract
In linear inverse problems considered in this paper a vector with positive components is to be selected from a feasible set defined by linear constraints. The selection rule involves minimization of a certain function which is a measure of distance from a priori guess. Csiszar made an axiomatic approach towards defining a family of functions, we call it alpha-divergence, that can serve as logically consistent selection rules. In this paper we present an explicit and perfect dual of the resulting convex programming problem, prove the corresponding duality theorem and optimality criteria, and make some suggestions on an algorithmic solution.
Description
Keywords
convex programming, duality, inverse problems
Journal or Series
European Journal of Operational Research
WoS Q Value
Scopus Q Value
Volume
91
Issue
3










