On the dual of linear inverse problems

dc.contributor.authorKas, P
dc.contributor.authorKlafszky, E
dc.date.accessioned2026-02-06T18:36:11Z
dc.date.issued1996
dc.departmentDoğu Akdeniz Üniversitesi
dc.description.abstractIn linear inverse problems considered in this paper a vector with positive components is to be selected from a feasible set defined by linear constraints. The selection rule involves minimization of a certain function which is a measure of distance from a priori guess. Csiszar made an axiomatic approach towards defining a family of functions, we call it alpha-divergence, that can serve as logically consistent selection rules. In this paper we present an explicit and perfect dual of the resulting convex programming problem, prove the corresponding duality theorem and optimality criteria, and make some suggestions on an algorithmic solution.
dc.identifier.doi10.1016/0377-2217(95)00078-X
dc.identifier.endpage639
dc.identifier.issn0377-2217
dc.identifier.issue3
dc.identifier.scopus2-s2.0-0030169562
dc.identifier.scopusqualityQ1
dc.identifier.startpage634
dc.identifier.urihttps://doi.org/10.1016/0377-2217(95)00078-X
dc.identifier.urihttps://hdl.handle.net/11129/12257
dc.identifier.volume91
dc.identifier.wosWOS:A1996UT50800019
dc.identifier.wosqualityQ1
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherElsevier Science Bv
dc.relation.ispartofEuropean Journal of Operational Research
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_WoS_20260204
dc.subjectconvex programming
dc.subjectduality
dc.subjectinverse problems
dc.titleOn the dual of linear inverse problems
dc.typeArticle

Files